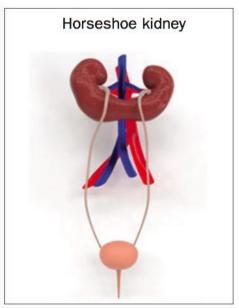
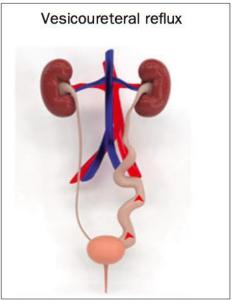
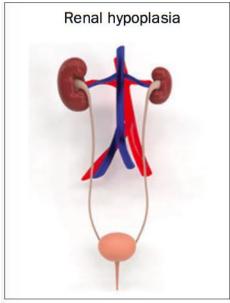
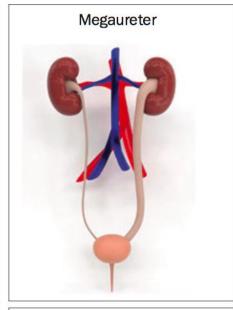

Bases genéticas de las anomalías congénitas renales y del tracto urinario (CAKUT)

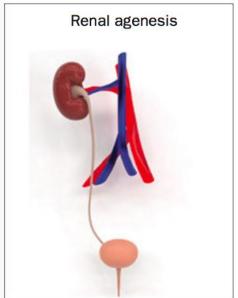
M. Nicole Bascur Postel

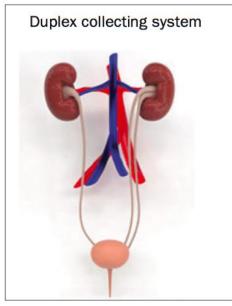

Teaching Course Nefrología Pediátrica Valdivia 26 y 27 de septiembre 2019

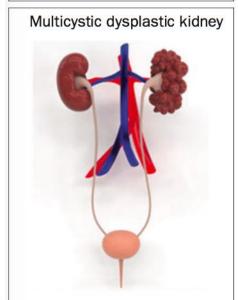

Epidemiología CAKUT

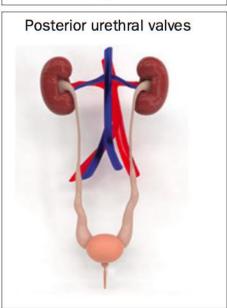

- 20-30 % de todas las malformaciones
- 1 en 500 RNV
- Europa 41,3 % de los niños con TRR
- Registro Chileno de ERC
 Pediátrica- 53% pacientes

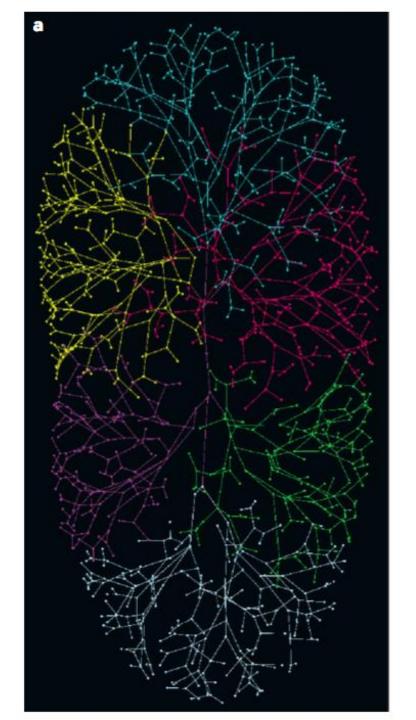


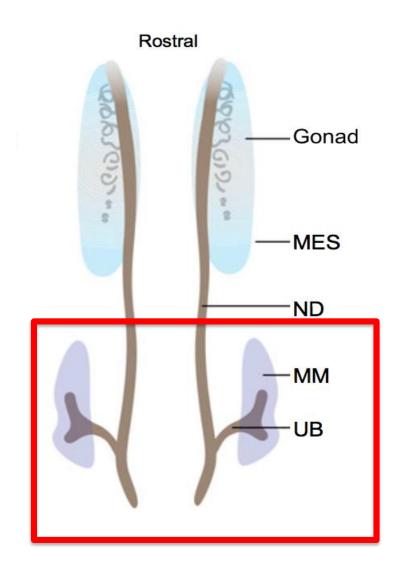

Pediatr Nephrol 29:2403–2410 (2014) Registro de ERC Rama Nefrología Pediátrica 2017

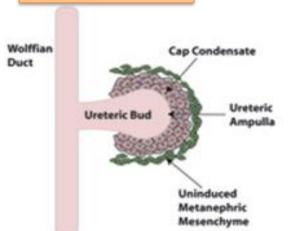


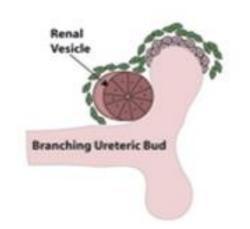


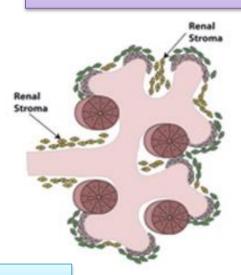




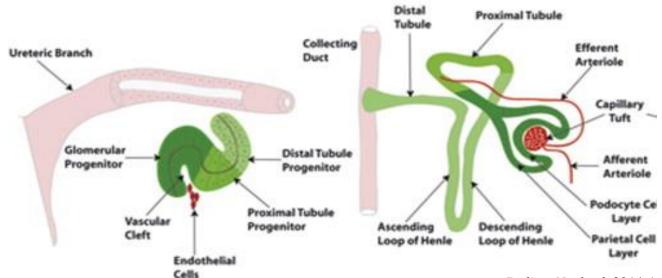


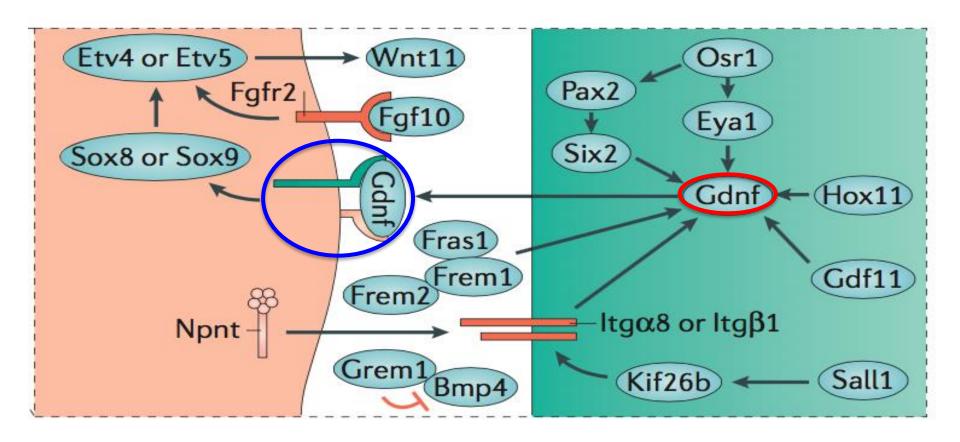



Development (2015) 142, 1937-1947

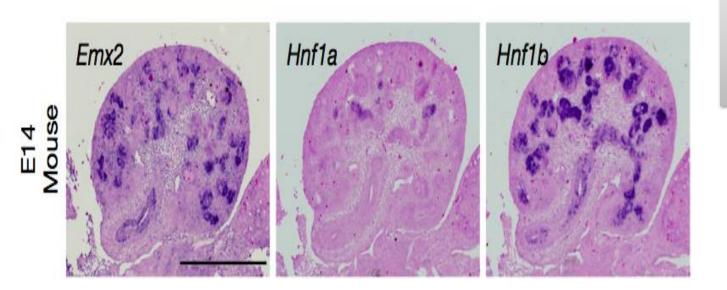

Inducción yema ureteral

Transición mesénquimo epitelial


Morfogénesis de la ramificación renal

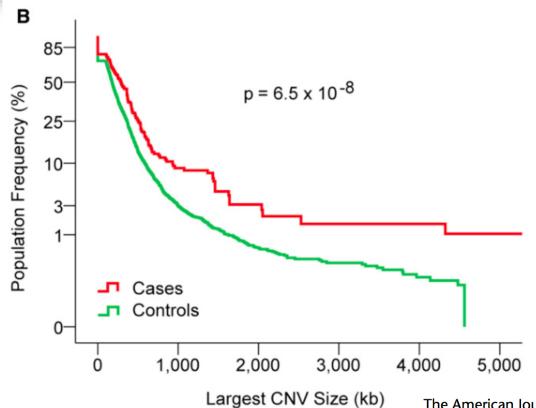


Desarrollo y elongación de nefrones (nefrogénesis)


Pediatr Nephrol. 2014 April; 29(4): 695–704

Inducción yema ureteral

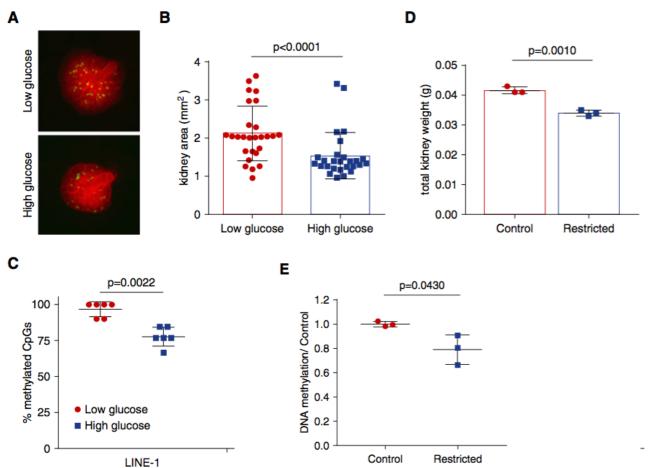
Direct reprogramming of fibroblasts into renal tubular epithelial cells by defined transcription factors

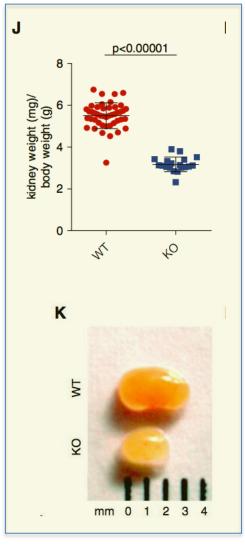

Michael M. Kaminski¹, Jelena Tosic^{1,2,3,4}, Catena Kresbach¹, Hannes Engel¹, Jonas Klockenbusch¹, Anna-Lena Müller¹, Roman Pichler¹, Florian Grahammer¹, Oliver Kretz^{1,5}, Tobias B. Huber^{1,6}, Gerd Walz^{1,6}, Sebastian J. Arnold^{1,2,6,7} and Soeren S. Lienkamp^{1,6,7}

Generación de células tubulares ex vivo *Emx2, Hnf1b, Hnf4a and Pax8*

Copy-Number Disorders Are a Common Cause of Congenital Kidney Malformations

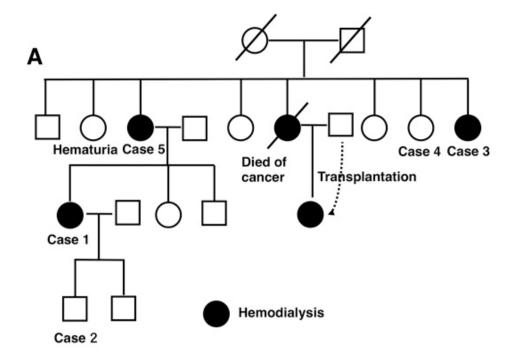
Simone Sanna-Cherchi,^{1,2} Krzysztof Kiryluk,¹ Katelyn E. Burgess,¹ Monica Bodria,³ Matthew G. Sampson,⁵ Dexter Hadley,⁴ Shannon N. Nees,¹ Miguel Verbitsky,¹ Brittany J. Perry,¹ Roel Sterken,¹ Vladimir J. Lozanovski,⁶ Anna Materna-Kiryluk,⁷ Cristina Barlassina,^{8,9} Akshata Kini,⁴ Valentina Corbani,¹⁰ Alba Carrea,³ Danio Somenzi,¹¹ Corrado Murtas,³ Nadica Ristoska-Bojkovska,⁶ Claudia Izzi,¹² Beatrice Bianco,¹¹ Marcin Zaniew,¹³ Hana Flogelova,¹⁴ Patricia L. Weng,¹ Nilgun Kacak,¹ Stefania Giberti,¹¹ Maddalena Gigante,¹⁵ Adela Arapovic,¹⁶ Kristina Drnasin,¹⁷ Gianluca Caridi,³ Simona Curioni,⁸ Franca Allegri,¹⁸ Anita Ammenti,¹⁹ Stefania Ferretti,²⁰ Vinicio Goj,²¹ Luca Bernardo,²¹ Vaidehi Jobanputra,²² Wendy K. Chung,²³ Richard P. Lifton,²⁴ Stephan Sanders,²⁴ Matthew State,²⁴ Lorraine N. Clark,²⁵ Marijan Saraga,^{16,26} Sandosh Padmanabhan,²⁷ Anna F. Dominiczak,²⁷ Tatiana Foroud,²⁸ Loreto Gesualdo,¹⁵ Zoran Gucev,⁶ Landino Allegri,¹¹ Anna Latos-Bielenska,⁷ Daniele Cusi,⁸ Francesco Scolari,¹² Velibor Tasic,⁶ Hakon Hakonarson,^{4,5} Gian Marco Ghiggeri,³ and Ali G. Gharavi^{1,*}




192 casos RHD (NA, Europa: Italia, Polonia, Macedonia, Croacia, República Checa) 4733 controles pareados por etnia

The American Journal of Human Genetics 91, 987–997, December 7, 2012

DNA Methyltransferase 1 Controls Nephron Progenitor Cell Renewal and Differentiation


Nicola Wanner,¹ Julia Vornweg,^{2,3} Alexander Combes,^{4,5} Sean Wilson,⁴ Julia Plappert,² Gesa Rafflenbeul,² Victor G. Puelles,¹ Raza-Ur Rahman,⁶ Timur Liwinski,^{6,7} Saskia Lindner,² Florian Grahammer,¹ Oliver Kretz,^{1,8} Mary E. Wlodek,⁹ Tania Romano,¹⁰ Karen M. Moritz,¹¹ Melanie Boerries,^{12,13,14} Hauke Busch,^{14,15} Stefan Bonn,^{6,16} Melissa H. Little,^{5,17} Wibke Bechtel-Walz,² and Tobias B. Huber^{1,2,18,19}

PAX2

- CAKUT aislado
- Displasia nervio óptico y malformaciones renales
- Autosómico dominante
- 10q24.31

Mutations in PAX2 Associate with Adult-Onset FSGS

Moumita Barua,* Emilia Stellacci,[†] Lorenzo Stella,[‡] Astrid Weins,[§] Giulio Genovese,*^{∥¶}** Valentina Muto,[†] Viviana Caputo,^{††} Hakan R. Toka,*^{‡‡} Victoria T. Charoonratana,* Marco Tartaglia,† and Martin R. Pollak*

176 familias GEFS 85 individuos CAKUT SECUENCIACIÓN EXOMA, Sanger

Table 2. Clinical features of FSGS families with PAX2 mutation-associated disease

Family ID	Self-Reported Ethnicity	Ages at Disease Onset (yr)	Persons Affected (n)	Patients with ESRD (n)	Ages at Development of ESRD (yr)	Ultrasonography Findings	Diagnosis	Patients with Biopsy (n)
FG-BF	White	8	2	1	Unknown	Increased echogenicity	FSGS	1
FG-DO	African American	7–11	2	Unknown	Unknown	Unknown	Proteinuria	Unknown
FG-EQ	European	17–68	6	2	40, 58	Dilated renal pelvis, small kidneys	FSGS	2
FG-GE	Unknown	Unknown	2	1	Unknown	Slightly small kidney, calyceal diverticulum	Proteinuria	1
FG-IX	Middle Eastern	36	4	Unknown	Unknown	Unknown	FSGS	Unknown
FG-JO	East Indian	31-32	5	4	30-36	Unknown	FSGS	3
FG-KV	European American	15–24	3	1	42	Unknown	FSGS, undiagnosed PRS	3

Dominant *PAX2* mutations may cause steroid-resistant nephrotic syndrome and FSGS in children

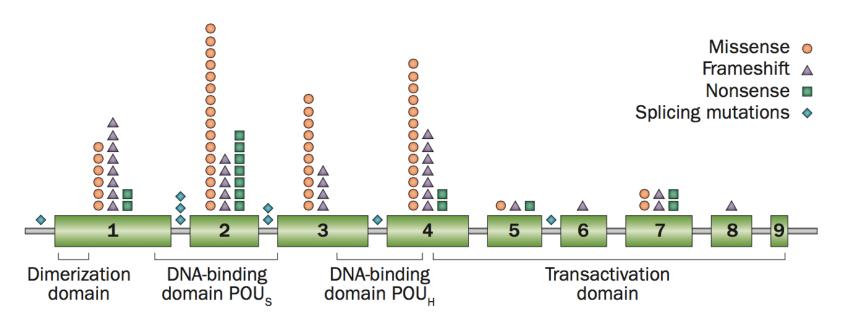

Asaf Vivante^{1,2} • Orna Staretz Chacham³ • Shirlee Shril¹ • Ruth Schreiber⁴ • Shrikant M. Mane⁵ • Ben Pode-Shakked^{2,6} Neveen A. Soliman⁷ • Irene Koneth⁸ • Mario Schiffer⁹ • Yair Anikster⁶ • Friedhelm Hildebrandt¹

Table 1 Four different heter	ozygous PAX2 mutations detected i	n four different families with SRNS/I	FSGS		
Family-Individual	Ancestry	Nucleotide alteration	Alteration in cod sequence ^a	ling Zygosity	
AN10-21 (index family) A4041-11 A4041-23 A4041-24 A5089-11 A5089-21 A5281	Arab Egypt Egypt Egypt Europe Europe Europe	c.69-70InsG b c.254G > T c.254G > T c.254G > T c.862-1G > A c.862-1G > A c c.275C > T	p.Val26Glyfs*28 p.Gly85Val p.Gly85Val p.Gly85Val Splice mutation Splice mutation p.Thr92Met	Het Het Het Het Het Het Het	
Family-Individual	SIFT/PP2	Presenting symptoms (age)	Renal histology	eGFR at presentation/ESRD age	Extra-renal phenotype
AN10–21 (index family)	SIFT/PP2 Deleterious/1 (reported)	Presenting symptoms (age) Elevated creatinine and proteinuria (2y)	Renal histology FSGS	eGFR at presentation/ESRD age ESRD at age 4 years	Extra-renal phenotype Coloboma, cardiomyopathy, microcephaly
		Elevated creatinine and proteinuria (2y) Proteinuria and elevated		•	Coloboma, cardiomyopathy,
AN10-21 (index family)	Deleterious/1 (reported)	Elevated creatinine and proteinuria (2y)	FSGS	ESRD at age 4 years	Coloboma, cardiomyopathy,
AN10–21 (index family) A4041–11	Deleterious/1 (reported) Deleterious/1 (novel)	Elevated creatinine and proteinuria (2y) Proteinuria and elevated creatinine (35y) Proteinuria and elevated creatinine (13y) Edema, proteinuria and	FSGS n/a	ESRD at age 4 years ESRD at age 39 years	Coloboma, cardiomyopathy,
AN10-21 (index family) A4041-11 A4041-23	Deleterious/1 (reported) Deleterious/1 (novel) Deleterious/1 (novel)	Elevated creatinine and proteinuria (2y) Proteinuria and elevated creatinine (35y) Proteinuria and elevated creatinine (13y)	FSGS n/a FSGS	ESRD at age 4 years ESRD at age 39 years 63 ml/min/1.73m ²	Coloboma, cardiomyopathy,
AN10-21 (index family) A4041-11 A4041-23 A4041-24	Deleterious/1 (reported) Deleterious/1 (novel) Deleterious/1 (novel)	Elevated creatinine and proteinuria (2y) Proteinuria and elevated creatinine (35y) Proteinuria and elevated creatinine (13y) Edema, proteinuria and elevated creatinine (10y) Proteinuria and normal	FSGS n/a FSGS FSGS	ESRD at age 4 years ESRD at age 39 years 63 ml/min/1.73m ² 50 ml/min/1.73m ²	Coloboma, cardiomyopathy,

HNF1B

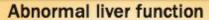
- Displasia renal, especialmente quística
- Quistes renales y diabetes
- Nefropatía túbulo intersticial AD

- 17q12
- Autosómico dominante
- Deleción completa del gen 50%

Neurological features

Detected among patients with deletion of chromosome 17q12

- Autism spectrum disorders
- Cognitive impairment


Early-onset diabetes mellitus

Pancreatic hypoplasia

- Hypoplasia of body and tail of pancreas with slightly atrophic head
- Pancreatic exocrine dysfunction, which is often subclinical

Genital tract malformations

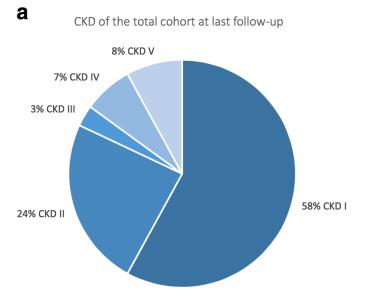
- Bicornuate uterus
- Uterus didelphys
- Rudimentary uterus
- Double vagina
- Vaginal aplasia

- Asymptomatic rise in the levels of liver enzymes (common)
- Neonatal cholestasis (rare)

Developmental kidney disease

- Bilateral hyperechogenic kidneys on prenatal ultrasonography
- Renal cysts
- Single kidney
- Renal hypoplasia
- Other: horseshoe and duplex kidneys, collecting system abnormalities, bilateral hydronephrosis

Hypomagnesaemia

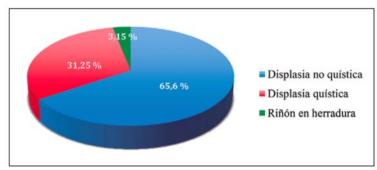

Hyperuricaemia and early-onset gout

HNF1B nephropathy has a slow-progressive phenotype in childhood—with the exception of very early onset cases: results of the German Multicenter HNF1B Childhood Registry

Christine Okorn ¹ · Anne Goertz ¹ · Udo Vester ¹ · Bodo B. Beck ^{2,3} · Carsten Bergmann ⁴ · Sandra Habbig ⁵ · Jens König ⁶ · Martin Konrad ⁶ · Dominik Müller ⁷ · Jun Oh ⁸ · Nadina Ortiz-Brüchle ⁹ · Ludwig Patzer ¹⁰ · Raphael Schild ⁸ · Tomas Seeman ¹¹ · Hagen Staude ¹² · Julia Thumfart ⁷ · Burkhard Tönshoff ¹³ · Ulrike Walden ¹⁴ · Lutz Weber ⁵ · Marcin Zaniew ¹⁵ · Hildegard Zappel ¹⁶ · Peter F. Hoyer ¹ · Stefanie Weber ¹⁷

62 pacientes con Nefropatía HNF1B con diagnóstico molecular

Table 3 Extrarenal manifestations at the end of observation (median age of the total cohort 8 years, mean 8.2 years)



Extrarenal manifestation	Patients	%	Age at diagnosis
Hypomagnesemia (< 0.65 mmol/l)	12/50	24	10.0 years (median)
Hyperuricemia	19/52	37	1.0 year (median)
Elevated liver enzymes	12/58	21	11.0 years (median)
Hyperglycemia	4/50	8	0, 4, 12, 14 years
Urogenital anomalies	1/62	2	Postnatal


Detección de mutaciones del gen de HNF1B en niños con malformaciones congénitas renales y del tracto urinario

Detection of mutations of the HNF1B gene in children with congenital anomalies of the kidney and urinary tract

M. Nicole Bascur P.a, M. Luisa Ceballos O.b, Mauricio Farfán U.b, Iván Gajardo H.b y Joaquín López C.b

Figura 1. Caracterización de la muestra de acuerdo a tipo de Malformación Nefrourológica.

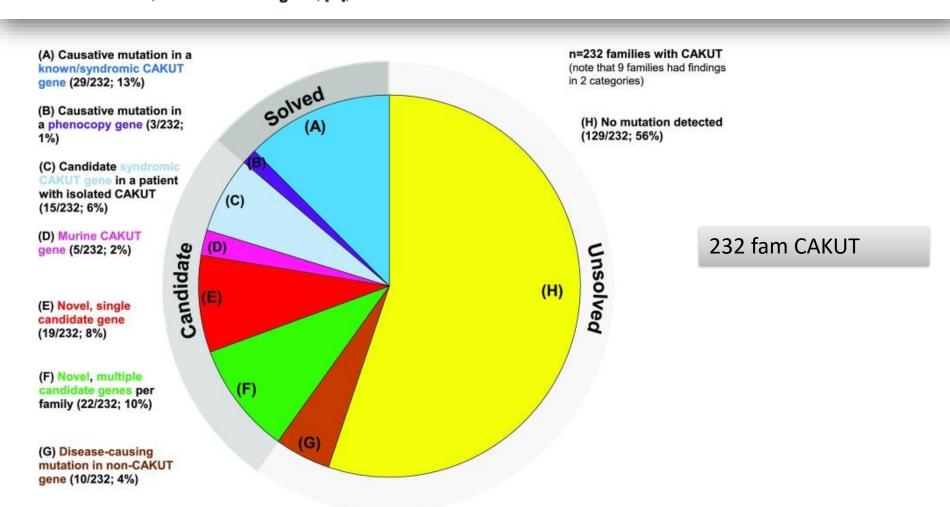

Figura 2. Caracterización de la muestra de acuerdo a la Etapa de Enfermedad Renal Crónica.

Tabla 1. Característic	as generales de	los casos índices
------------------------	-----------------	-------------------

ID paciente	Edad (a)	Sexo	CAKUT	Etapa ERC	Exon	Mutación
10	17	F	Displasia quística izquierda	1	4	C1027T
24	8	М	Displasia no quística bilateral	5	4	C1027T

Whole-Exome Sequencing Identifies Causative Mutations in Families with Congenital Anomalies of the Kidney and Urinary Tract

Amelie T. van der Ven, Dervla M. Connaughton, [...], and Friedhelm Hildebrandt

Whole-Exome Sequencing in the molecular diagnosis of individuals with congenital anomalies of kidney and urinary tract and identification of a new causative gene

Mir Reza Bekheirnia, MD, FACMG^{1,2,3,4}, Nasim Bekheirnia, MBS, MS^{1,2,4}, Matthew N. Bainbridge, PhD⁵, Shen Gu, PhD¹, Zeynep Hande Coban Akdemir, PhD¹, Tomek Gambin, PhD¹, Nicolette K. Janzen, MD^{3,4}, Shalini N. Jhangiani, MS⁵, Donna M. Muzny, MS⁵, Mini Michael, MD^{4,6}, Eileen D. Brewer, MD^{4,6}, Ewa Elenberg, MD^{4,6}, Arundhati S. Kale, MD^{4,6}, Alyssa A. Riley, MD^{4,6}, Sarah J. Swartz, MD^{4,6}, Daryl A. Scott, MD, PhD^{1,4}, Yaping Yang, PhD¹, Poyyapakkam R. Srivaths, MD^{4,6}, Scott E. Wenderfer, MD, PhD^{4,6}, Joann Bodurtha, MD, MPH⁷, Carolyn D. Applegate, MS⁷, Milen Velinov, MD, PhD⁸, Angela Myers, MD⁹, Lior Borovik, MS⁹, William J. Craigen, MD, PhD^{1,4}, Neil A. Hanchard, MD, PhD^{1,4}, Jill A. Rosenfeld, MS¹, Richard Alan Lewis, MD^{1,4,10}, Edmond T. Gonzales, MD^{3,4}, Richard A. Gibbs, PhD^{1,5}, John W. Belmont, MD, PhD^{1,4}, David R. Roth, MD^{3,4}, Christine Eng, MD¹, Michael C. Braun, MD^{4,6}, James R. Lupski, MD, PhD^{1,4,5,11}, and Dolores J. Lamb, PhD^{2,3,12}

Family ID	Gene	Sex	Ethnicity	Renal phenotype	Genome build	Chr: position	Nucleotide change	Amino- acid change	Other organ defects
1	PAX2	M,F	Spanish	RHD	Hg19	10: 102509528	c.70delG	p.G24fs	Optic nerve coloboma (previously undiagnosed)
2	HNF1B	М	Mixed Caucasian and African Caribbean	CRD	Hg19	17: 36070584	c.1132dupC	p.Q378fs	Gout, elevated LFTs (recent diagnosis) and increased echogenicity of pancreas (not noted prior to WES)
3	EYAI	F	AA	VUR, MCDK	Hg19	8: 72183988	c.867+5G>A	n/a	No

62 familias CAKUT 5% fam SNVs: PAX2, HNF1B, EYA1 4 fam CNV patogénicas

AA African American; AD, autosomal dominant, BOR; Branchio-oto-renal syndrome; CADD, Combined Annotation Dependent Depletion; Chr, chromoso Exome Aggregation Consortium; LFT, liver function tests; LOF, loss-of-function; MCDK, Multicystic dysplastic kidney; N/R, none reported, RHD, Renal

Copy-number variants (CNVs) identified (from WES data of 62 families) which are relevant to the patient's phenotype

Family ID	Chromosomal region	CNV Type	Start (Mb)	End (Mb)	Size (Mb)	Number of genes	Syndrome	Phenotype	Parental Studies	Comments
Family 34	22q11	Trp	16.63	18.64	2.01	33	Cat eye syndrome	VUR, further details in text (multiple anomalies)	De Novo	Pathogenic
Family 39	16p13.11	Dup	15.12	16.29	1.17	19	16p13.11 dup	MCDK, facial dysmorphic features	Unknown	Pathogenic
Family 10	16p11.2	Dup	29.68	30.20	0.52	35	16p11.2 dup	Solitary kidney, psychiatric disorder, hypothyroidism	Unknown	Pathogenic
Family 31	16p11.2	Del	28.83	29.04	0.21	13	16p11.2 del	VUR, seizure, DD, LD, and optic edema	Unknown	Pathogenic
Family 33	3q29	Dup	197.51	197.59	80.0	2	-	VUR, cataract, and growth delay	Unknown	VUS
Family 25	2p24.3	Del	15.30	15.38	80.0	1		PUV, heterotaxy	Inherited	VUS
Family 21	4q35.1	Dup	185.99	189.11	3.12	30		PUV	Inherited	VUS

DD, developmental delay; del, deletion; dup, duplication; LD, learning disability; MCDK, multicystic dysplastic kidney; PUV, posterior urethral valve; trp, triplication; VUR, vesicoureteral reflux; VUS, variant of uncertain clinical significance

¿Por qué hacer estudios genéticos en pacientes con CAKUT?

- Confirma diagnóstico clínico
- Acelera evaluación de manifestaciones extra renales
- Establece patrones de herencia
- Determinación de tratamientos
- Guía decisiones en el planeamiento familiar
- Identifica factores de riesgo de recurrencia en postTx
- Evaluación de miembros de la familia como donantes renales

- ¿ A quienes ?
- Sociedades científicas

Cambios

 paradigmas,
 medicina
 individualizada,
 etiológica

Gracias