

Acute renal injury in the neonatal period

Pierre Cochat, MD PhD Professor of Pediatrics Head, Center for Rare Renal Diseases Néphrogones Hospices Civils de Lyon & University, Claude-Bernard, Lyon Concernent of Co

AKI in neonates

TABLE	1 Neonatal AKI KDIGO Classification		
Stage	SCr	Urine Output	
0	No change in SCr or rise $<$ 0.3 mg/dL	\geq 0.5 mL/kg/h	
1	SCr rise \geq 0.3 mg/dL within 48 h or SCr rise \geq 1.5–1.9 \times reference SCr ^a within 7 d	<0.5 mL/kg/h for 6 to 12 h	
2	SCr rise \geq 2.0–2.9 \times reference SCr ^a	$<$ 0.5 mL/kg/h for \geq 12 h	
3	SCr rise $\geq \! 3 \times \rm reference \ SCr^a$ or SCr $\geq \! 2.5 \ \rm mg/dL^b$ or Receipt of dialysis	<0.3 mL/kg/h for \geq 24 h or anuria for \geq 12 h	

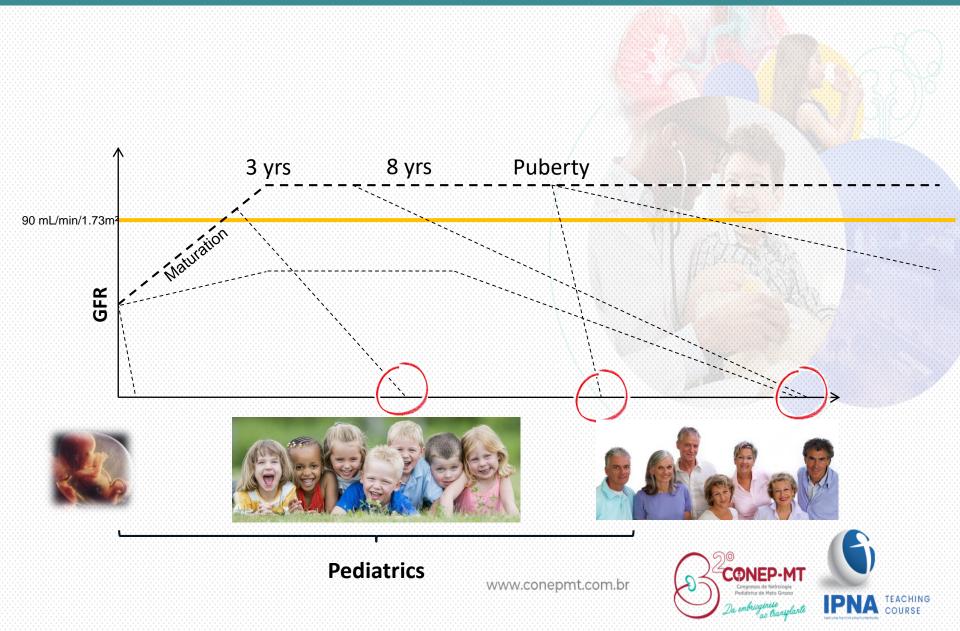
Selewski Pediatrics 2015

TABLE 2 Risk Factors for AKI in Neonates

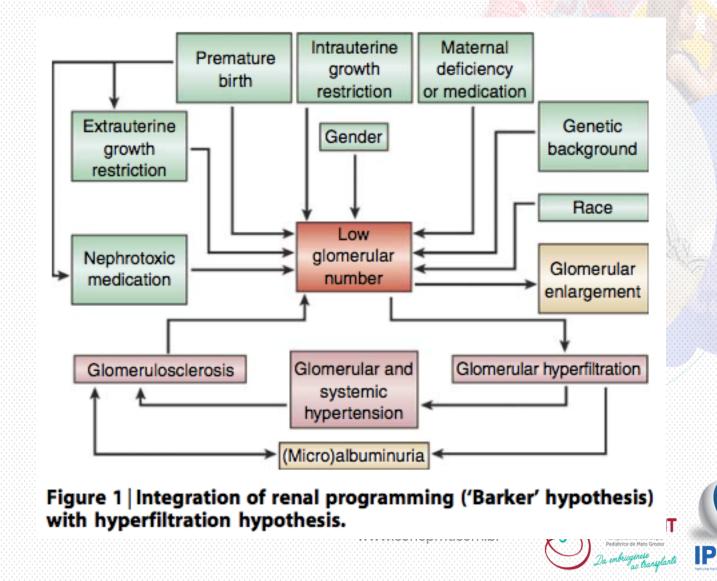
TABLE 2 NISK FACTORS IN			
Study	Population	Study Size	Risk Factors Associated With AKI
Cataldi et al 2005 ⁴⁸	Premature infants	172	Low Apgar scores, exposure to ampicillin, ceftazidime, ibuprofen
Cuzzolin et al 2006 ⁴⁷	Premature infants	246	Maternal nonsteroidal anti-inflammatory drugs during pregnancy, intubation at birth, low Apgar scores, ibuprofen administration to infant
Koralkar et al 2011 ¹⁰	VLBW	229	Lower birth weight, lower gestational age, lower Apgar scores, UAC, mechanical ventilation, inotrope support
Viswanathan et al 2012 ⁶⁵	ELBW	472	High mean airway pressures, lower mean arterial pressures, higher exposure to cefotaxime
Mathur et al 2006 ⁵⁵	Neonates with sepsis	200	Lower birth weight, meningitis, DIC, and shock
Selewski et al 2013 ¹²	Asphyxiated neonates undergoing therapeutic hypothermia	96	Asystole at the time of birth, clinical seizures before cooling, persistent pulmonary hypertension, elevated gentamicin or vancomycin levels, pressor support, transfusions
Bruel et al 2013 ¹⁰³	Premature infants (<33 wk)	1461	Serum sodium variation, PDA, catecholamine treatment, nosocomial infections, BPD, cerebral lesions, neonatal surgery
Gadepalli et al 2011 ⁸	Congenital diaphragmatic hernia	68	Lower 5-min Apgar score, AKI correlated with left-sided CDH
Bolat et al 2013 ⁵⁴	General NICU	1992	Pregnancy-induced hypertension, PPROM, antenatal corticosteroids, SGA, birth weight <1500 g, endotracheal intubation, UVC, ibuprofen therapy for PDA closure, sepsis
Askenazi et al 2013 ⁶³	Birth weight >2000 g, gestational age >34 wk, 5-min Apgar <7	58	Lower birth weight, male, lower Apgar scores at 5 min, lower cord pH, mechanical ventilation

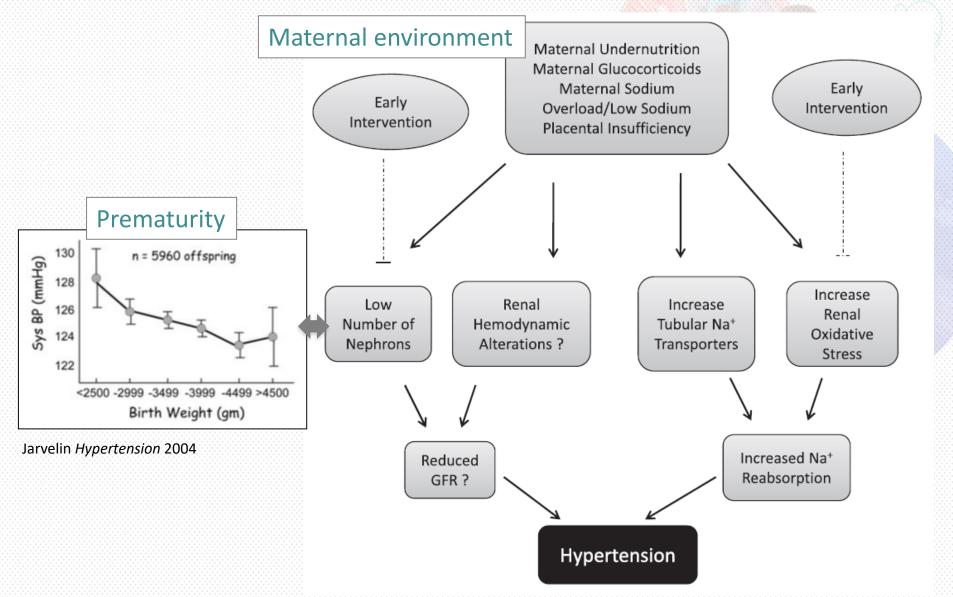
RIFLE score

Table 1. Synoptic view of adult, paediatric and neonatal RIFLE

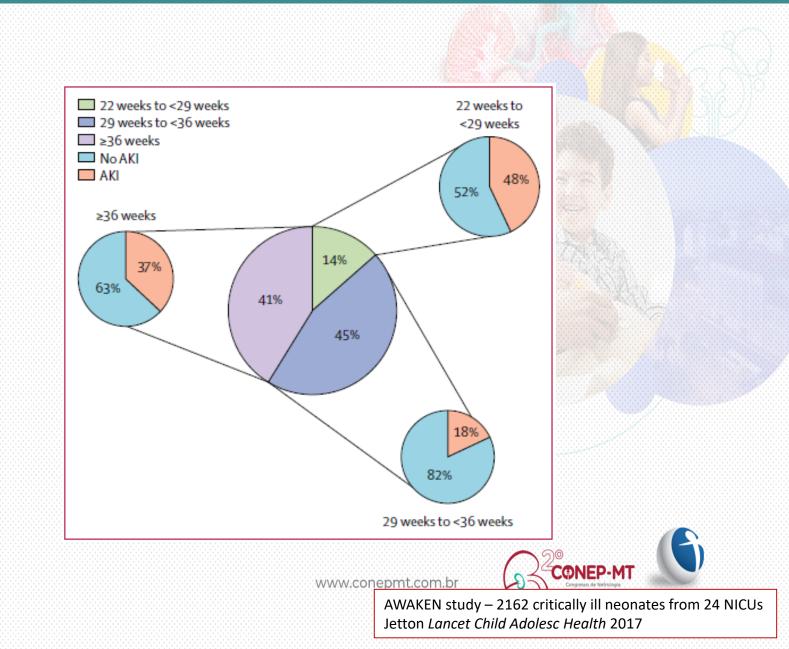

	Creatinine criteria	Urine output criteria					
	RIFLE	pRIFLE	nRIFLE	RIFLE	pRIFLE	nRIFLE	
Risk	Increased creatinine × 1.5 or GFR decreases >25%	eCCl decrease by 25%	?	$UO \le 0.5 \text{ mL/} \\ \text{kg/h} \times 6 \text{ h}$	UO < 0.5 mL/ kg/h for 8 h	UO < 1.5 mL/ kg/h for 24 h	
Injury	Increased creatinine × 2 or GFR decreases >50%	eCCl decrease by 50%	;	$\begin{array}{l} UO \leq 0.5 \text{ mL/} \\ \text{kg/h} \times 12 \text{ h} \end{array}$	UO < 0.5 mL/ kg/h for 16 h	UO < 1.0 mL/ kg/h for 24 h	
Failure	Increased creatinine × 3 or GFR decreases >75% or creatinine ≥4 mg/dL (acute rise of ≥4 mg/dL)	eCCl decrease by 75% or eCCl <35 mL/ min/1.73 m ²	?	$UO \le 0.3 \text{ mL/}$ kg/h × 24 h or anuria × 12 h	UO < 0.3 mL/ kg/h for 24 h or anuric for 12 h	UO < 0.7 mL/ kg/h for 24 h or anuric for 12 h	
Loss	Persistent failure >4 weeks						
End stage	Persistent failure >3 months						

Ricci Nephrol Dial Transplant 2013


A question of renal capital


Wühl Pediatr Nephrol 2008

Fetal programming: glomerular number


Schreuder Kidney Int 2007

Fetal programming: BP

Epidemiology: gestional age distribution and AKI status

Epidemiology: infant variables

	No AKI (n=1417)	AKI (n=605)	p value
Infant variables			
Sex			0.12
Female	622 (44%)	258 (43%)	
Male	795 (56%)	347 (57%)	
Ethnic origin			0.03
Hispanic	198 (14%)	60 (10%)	
Non-Hispanic	1004 (71%)	441 (73%)	
Unknown	215 (15%)	104 (17%)	
Race			0.07
White	777 (55%)	364 (60%)	
Black	271 (19%)	107 (18%)	
Other	369 (26%)	134 (22%)	
Site of delivery (outborn)	EOE (2(m))	D40 (F 90)	-0.0001
Site of delivery (outpoint)	505 (36%)	349 (58%)	<0.0001
Gestational age	505 (36%) 	349 (50%) 	<0.0001
Gestational age		 131 (22%)	<0.0001
Gestational age 22 weeks to <29 weeks	 142 (10%)	 131 (22%)	<0.0001
Gestational age 22 weeks to <29 weeks 29 weeks to <36 week	 142 (10%) 748 (53%)	 131 (22%) 168 (28%)	<0·0001
Gestational age 22 weeks to <29 weeks 29 weeks to <36 week ≥36 weeks	 142 (10%) 748 (53%) 527 (37%)	 131 (22%) 168 (28%) 306 (51%)	<0.0001
Gestational age 22 weeks to <29 weeks 29 weeks to <36 week ≥36 weeks Birthweight (g)	 142 (10%) 748 (53%) 527 (37%) 	 131 (22%) 168 (28%) 306 (51%) 119 (20%)	<0.0001 <0.0001
Gestational age 22 weeks to <29 weeks 29 weeks to <36 week ≥36 weeks Birthweight (g) ≤1000	 142 (10%) 748 (53%) 527 (37%) 112 (8%)	 131 (22%) 168 (28%) 306 (51%) 119 (20%) 57 (9%)	<0.0001 <0.0001
Gestational age 22 weeks to <29 weeks 29 weeks to <36 week ≥36 weeks Birthweight (g) ≤1000 1001–1500	 142 (10%) 748 (53%) 527 (37%) 112 (8%) 238 (17%)	 131 (22%) 168 (28%) 306 (51%) 119 (20%) 57 (9%)	<0.0001 <0.0001
Gestational age 22 weeks to <29 weeks 29 weeks to <36 week ≥36 weeks Birthweight (g) ≤1000 1001–1500 1501–2500	 142 (10%) 748 (53%) 527 (37%) 112 (8%) 238 (17%) 552 (39%)	 131 (22%) 168 (28%) 306 (51%) 119 (20%) 57 (9%) 124 (21%)	<0.0001 <0.0001
Gestational age 22 weeks to <29 weeks 29 weeks to <36 week ≥36 weeks Birthweight (g) ≤1000 1001–1500 1501–2500 ≥2501	 142 (10%) 748 (53%) 527 (37%) 112 (8%) 238 (17%) 552 (39%) 513 (36%)	 131 (22%) 168 (28%) 306 (51%) 119 (20%) 57 (9%) 124 (21%) 302 (50%)	<0.0001 <0.0001

	No AKI (n=1417)	AKI (n=605)	p value
Infant variables			
Reason for admission*			
Prematurity < 35 weeks	791 (56%)	263 (43%)	<0.0001
Respiratory symptoms	314 (22%)	150 (25%)	0.20
Respiratory failure	651 (46%)	281 (46%)	0.84
Sepsis evaluation	742 (52%)	274 (45%)	0.004
Hypoxic ischaemic encephalopathy	70 (5%)	48 (8%)	0.01
Seizures	33 (2%)	37 (6%)	<0.0001
Hypoglycaemia	168 (12%)	50 (8%)	0.02
Hyperbilirubinaemia	32 (2%)	29 (5%)	0.002
Metabolic evaluation	8 (1%)	12 (2%)	0.003
Trisomy 21	14 (1%)	9 (1%)	0.33
Congenital heart disease	34 (2%)	48 (8%)	<0.0001
Necrotising enterocolitis	6 (<1%)	15 (2%)	<0.0001
Omphalocele and gastroschisis	32 (2%)	15 (2%)	0.76
Need for surgical evaluation	47 (3%)	48 (8%)	<0.0001
Meningomyelocele	9 (1%)	8 (1%)	0.12
Small for gestational age	306 (22%)	117 (19%)	0.27
Large for gestational age	58 (4%)	40 (7%)	0.02

www.conepmt.com.br

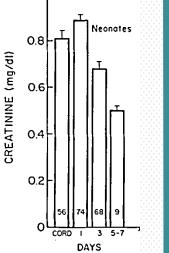
ING

AWAKEN study – 2162 critically ill neonates from 24 NICUs Jetton *Lancet Child Adolesc Health* 2017

Definition

Decrease in GFR

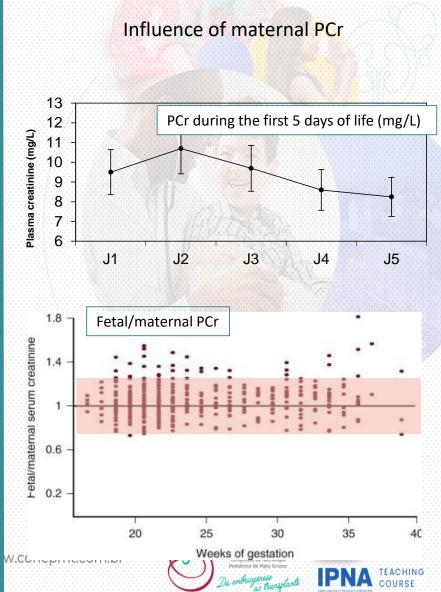
- Plasma creatinine
 - Late (50 % nephron loss)
 - Overestimation
 - Which method? (interférence)
 - When?
- Clearance measurement
- Estimation formulas
 - Which K?
 - Indivudual vs. population?
- New markers
 - Cystatine C
 - Others?

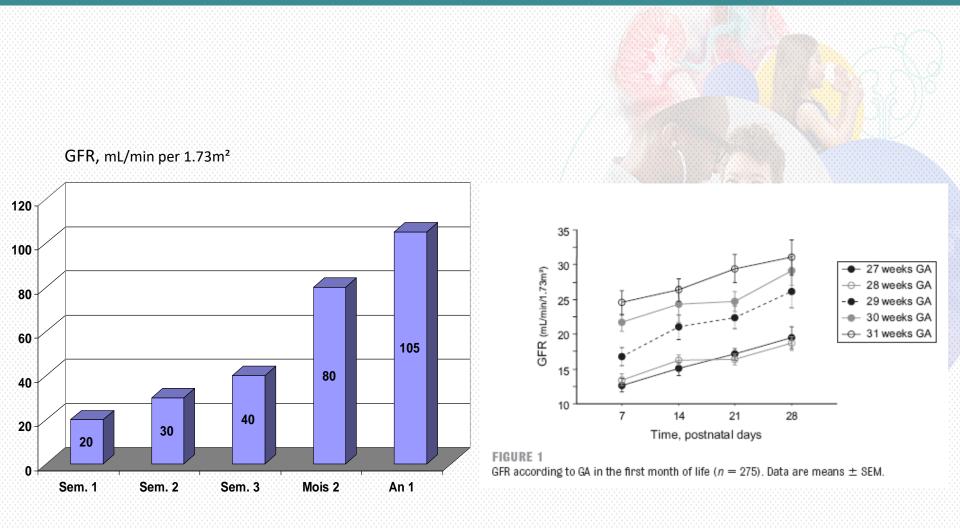

Urine output

- Maintaining homeostasis...
- 99 % 1st micturition <48 h
- 1st urine
 - Low concentration capacity
 - Solute losses
- Variable urine output
- In case of anuria
 - Prenatal information?
 - Obstruction?
 - AKI?
 - Just wait?

Plasma creatinine

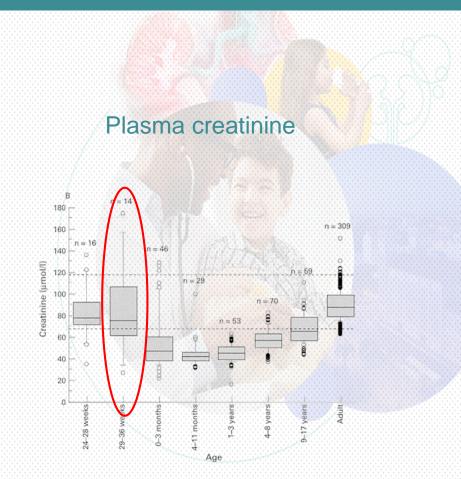
Gouyon Pediatr Nephrol 2000 Schwartz J Pediatr 1984 Selewski J Pediatr 2013


- Full-term baby
 - PCr <15 mg/L [<133 μmol/L]</p>
 - Decrease over 5 days

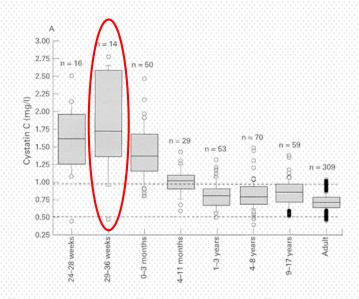

- Premature baby
 - Tubular reabsorption of creatinine
 - Increased PCr in very LBW
 - Decrease over 2 to 3 weeks

Evolution of PCr, μ mol/L

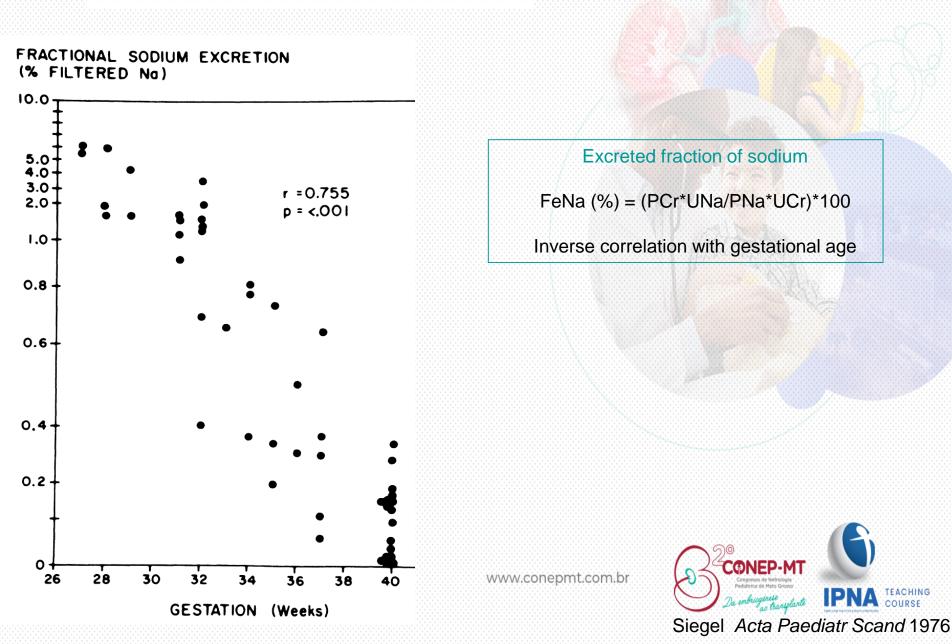
Birth weight	1-2 days	8-9 days	15-16 days	22-23 days
1001-1500 g	95 ±5	64 ±5	49 ±4	35 ±3
1501-2000 g	$90 \pm \! 5$	58 ± 7	50 ±8	30 ±2
2001-2500 g	83 ±5	47 ±8	38 ±8	$30{\pm}10$
Full-term	66 ±3	40 ± 4	30 ±8	27 ±7



GFR maturation



Plasma cystatin C vs. Plasma creatinine?



Plasma cystatin C

Tubular maturation

What about other markers to predict AKI?

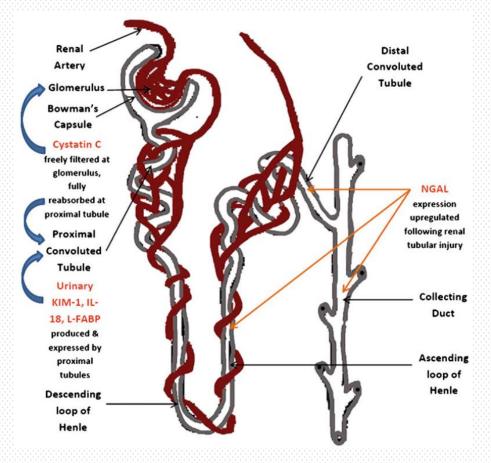
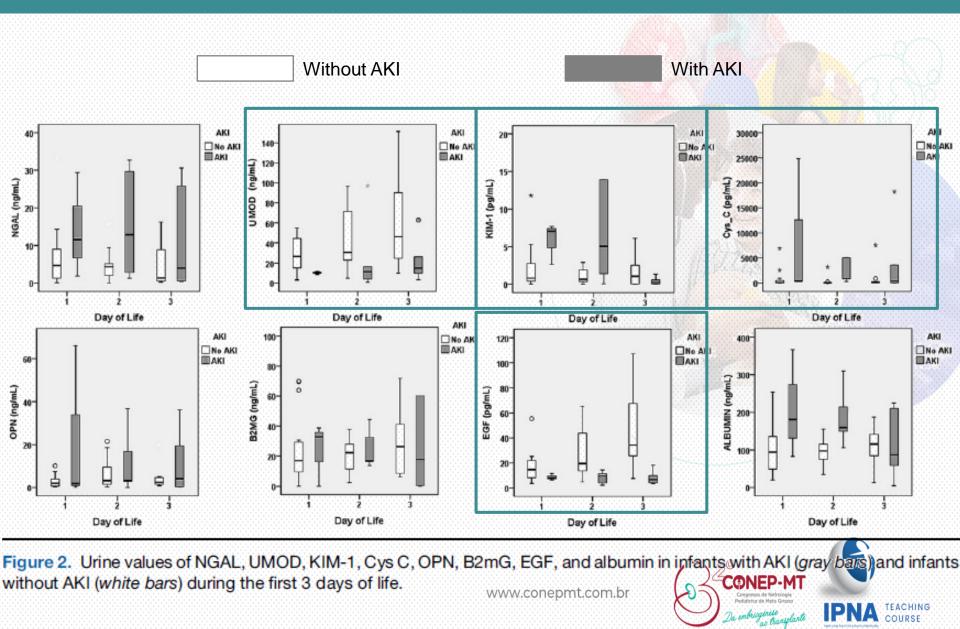



 Table 5 Diagnostic accuracy of the biomarkers evaluated on day of life 1 for predicting acute kidney injury (AKI)

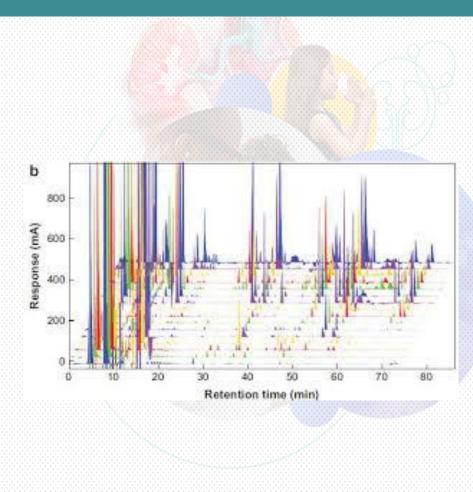
	AUC	p value	Cut- off point	Sensitivity	Specificity
Serum		0			
CysC (mg/l)	0.731	0.067	>2.87	66.7	88.5
NGAL (ng/ml) Urine	0.942	<0.001	>89.6	100	92.3
Standardized v	alues				
CysC (ng/mg)	0.927	<0.001	>476	100	83.3
NGAL (ng/mg)	0.896	<0.001	>39.3	100	83.3
KIM-1 (ng/mg) Absolute value	0.608 s	0.459	>0.928	80	62.5
CysC (ng/ml)	0.937	<0.001	>204.4	100	91.7
NGAL (ng/ml)	0.865	<0.001	>18.61	100	83.3
KIM-l (pg/ml)	0.583	0.575	>569.8	40	86

Sarafadis Pediatr Nephrol 2012

What about other markers to predict AKI?

Askenazi J Pediatr 2012

Ideal marker


- Very early
- Able to assess short and long-term renal function
- Able to differenciate glomerular and tubular lesions
- Independent of term at the time of diagnosis

In the future: use of metabolomics?

- Individual metabolomic profile
- 20 children with/without AKI
- Hippurate & homovanillate

Kelly Mercier Pediatr Nephrol 2016

Diagnosis: Take home message...

What about numbers...

Plasma creatinine

>24h according to mother's PCr

Kinetic profile during the first days of life

Importance of a « non-decrease » during the first week of life

Urine output

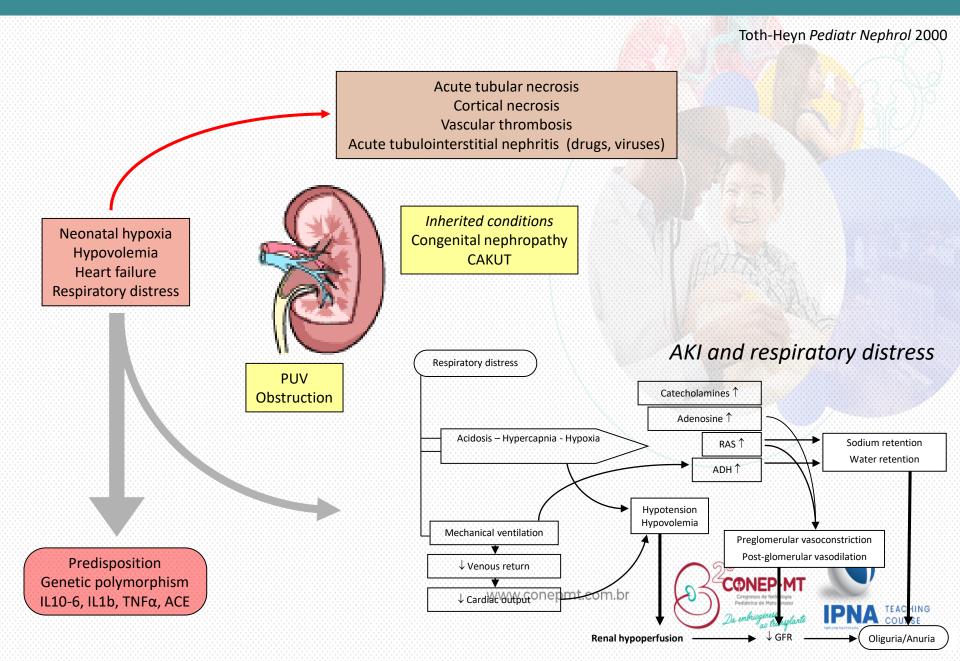
AKI < 0.5 to 1 mL/kg per hour Over which time interval? Delayed 1st micturition Fluctuation over 24h Challenging urine collection

Give priority to global presentation

Associated metabolic disorders

At-risk conditions (ductus arteriosus, concomitant treatments, etc.)

Ultrasonography


Kidney size

Parenchymal differenciation

New and forthcoming markers yet to be evaluated/validated

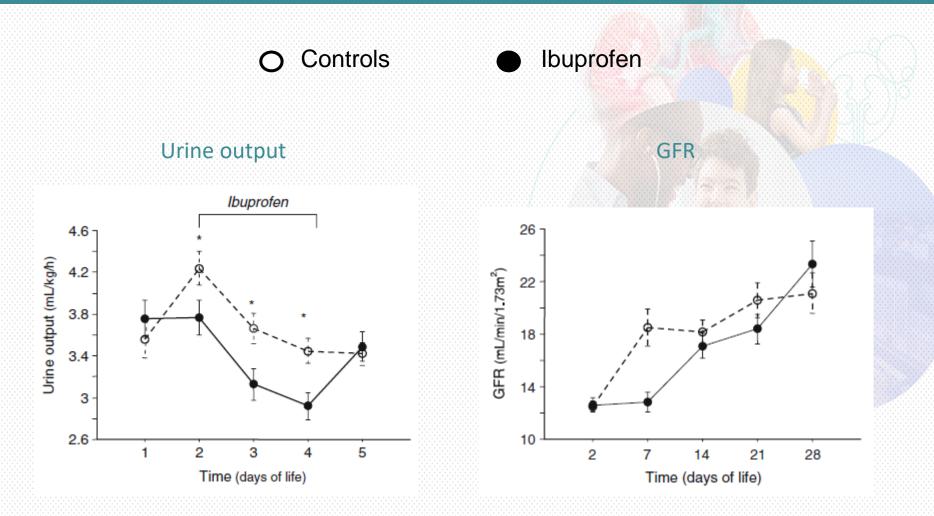
Etiologies

Drug-induced AKI in the neonatal period: NSAIDs

TABLE 3 Common Nephrotoxic Medications in NICU

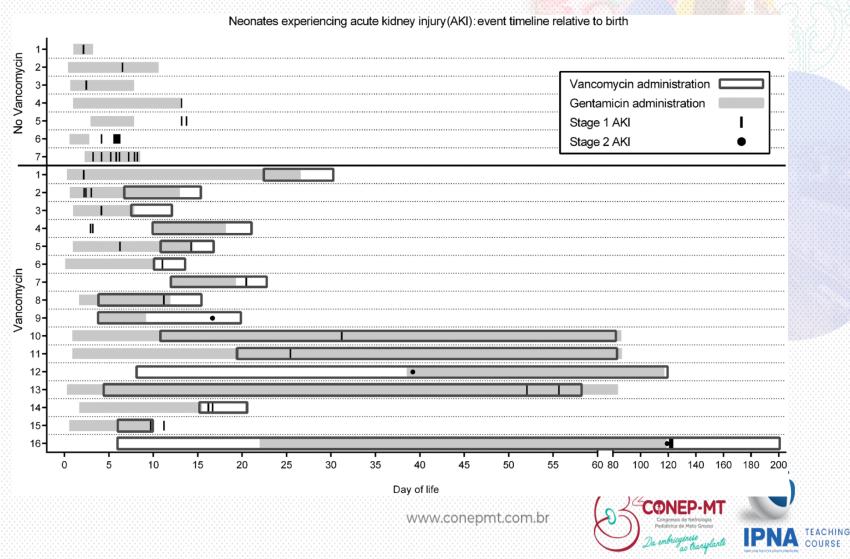
Drug	Mechanism			
Acyclovir	Urinary precipitation, especially with low flow and hypovolemia, with renal tubular obstruction and damage and decreased GFR. May cause direct tubular toxicity (metabolites).			
Angiotensin-converting enzyme inhibitors	Decreased angiotensin II production inhibiting compensatory constriction of the efferent arteriole to maintain GFR.			
Aminoglycosides	Toxic to the proximal tubules (transport in the tubule, accumulate in lysosome, intracellular rise in reactive oxygen species and phospholipidosis, cell death); intrarenal vasoconstriction and local glomerular/mesangial cell contraction.			
Amphotericin B	Distal tubular toxicity, vasoconstriction, and decreased GFR.			
Nonsteroidal antiinflammatory drugs	Decreased afferent arteriole dilatation as a result of inhibiting prostaglandin production resulting in reduced GFR.			
Radiocontrast agents	Renal tubular toxicity secondary to increase in reactive oxyger species; intrarenal vasoconstriction may play a role.			
Vancomycin	Mechanism of AKI unclear, possible mechanism includes proximal tubular injury with generation of reactive oxygen species.			

 Table 3
 Descriptive and bivariate analysis of the drugs prescribed during the first week of life


	Low GFR (n=183)	High GFR (n=86)	р
Ibuprofen	55 (30.0%)	15 (17.4%)	0.03
Vasoactive drugs	37 (20.2%)	17 (19.8%)	0.93
Expansion fluids	50 (27.3%)	26 (30.2%)	0.62
Aminoglycosides > 2 days	48 (26.2%)	26 (30.2%)	0.49
Mean plasma amikacin level (mean± SD)	5.3±1.9	4.8±1.8	0.27
High serum level of aminoglycosides (>5 μ g/ml)	24 (13.1%)	9 (10.5%)	0.38
Glycopeptides > 2 days	18 (9.8%)	10 (11.6%)	0.65
Mean plasma glycopeptide level (mean±SD)	25.7±8.1	26.6±8.4	0.77
High serum level of glycopeptides (>30 µg/ml)	10 (5.5%)	3 (3.5%)	0.50
Aminoglycosides + glycopeptides	6 (3.3%)	4 (4.7%)	0.58
Cox inhibitors + aminoglycosides	11 (6.0%)	4 (4.7%)	0.65
Cox inhibitors + glycopeptides	11 (6.0%)	3 (3.5%)	0.38
Potentially nephrotoxic drugs	145 (79.2%)	69 (80.2%)	0.85
Nephrotoxic drugs > 2 days	96 (52.5%)	40 (46.5%)	0.36

Selewski Pediatrics 2015

Vieux Pediatr Nephrol 2010



Drug-induced AKI in the neonatal period: NSAIDs

Drug-induced AKI in neonates: Vancomycin and Gentamicin

Constance Arch Dis Child Fetal Neonatal Ed 2015

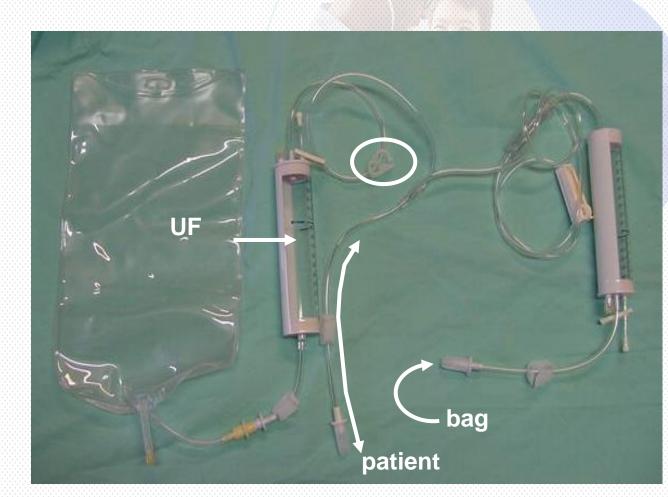
Primary disease in patient starting RRT in the 1st month of life

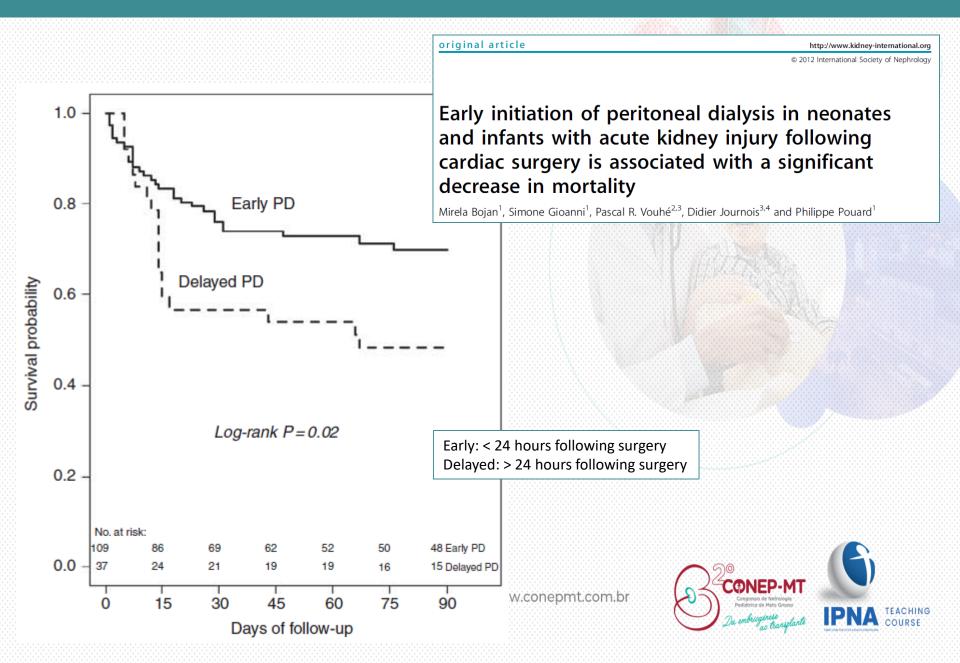
<u>Diagnosis (N= 264)</u>	N	%
CAKUT	144	54.6
Cystic kidney disease	35	13.3
Cortical necrosis	30	11.4
Congenital nephrotic syndrome	15	5.7
Renal vascular disease	9	3.4
Hemolytic uremic syndrome	3	1.1
Angiotensin-receptor blockade fetopathy	3	1.1
Oxalosis	2	0.8
Other not specified	23	8.7

Management

- Recognize at-risk situations
- Primum non nocere
 - Nephrotoxic drugs
- Clinical assessment of pre-renal condition
 - In/out volumes ml [poids]
- Management of shock/hypovolemia
 - 0,9% saline 20mL/kg over 20 min: result?
 - ± Noradrenaline? Dopamine? Corticosteroids?
 - Diuretics?
- Correction of acidosis, both metabolic and respiratory
- Electrolytic disturbances
 - Hyponatremia
 - Hyperkalemia
- Nutrition
- Extrarenal support

Seminars in Fetal & Neonatal Medicine 2006


Prevention!



Peritoneal dialysis

- Simple technique
- No vascular access, PD catheter at bedside if required
- Stable BP
- Automated device
- Home treatment
- Relies on experience
- Risk of peritonitis
- Global challenge
- Ethical issues

Peritoneal dialysis

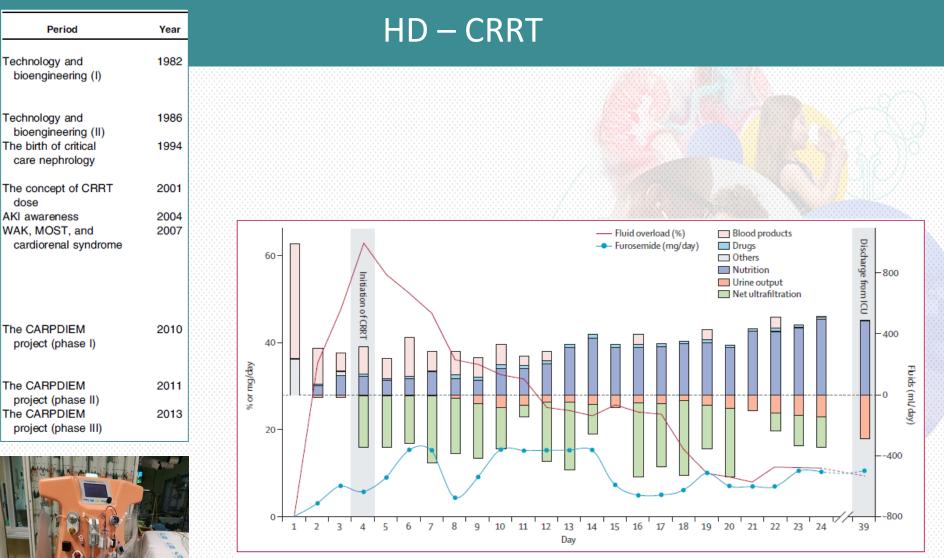
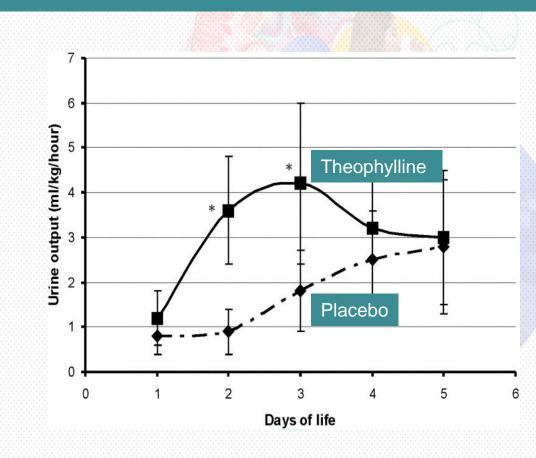


Figure 1: Fluid balance during the first 25 days (and final day) of stay in neonatal intensive care

Other options and future developments

New/revisited approaches


- Theophylline (0.5-8 mg/kg) [adenosine antagonist]
- Anti-thromboxane receptor
- Calcium channel inhibitors
- ATP-MgCl₂ (prevention of cell damage)
- Thyroxine ($\uparrow ATP$) ÷
- Cytokines
- Ischemia-reperfusion
 - Stem cells

A randomized, placebo-controlled trial of the effect of theophylline in term neonates with perinatal asphyxia

30 Placebo vs. 40 Theophylline Single dose, 8 mg/kg

Increased urine output from D2 to D5 Increased GFR from D2 to D3 $20\pm 8 vs 7\pm 4; p < 0.001$ Severe renal dysfunction 25 % vs 60 %Decreased β 2M excretion

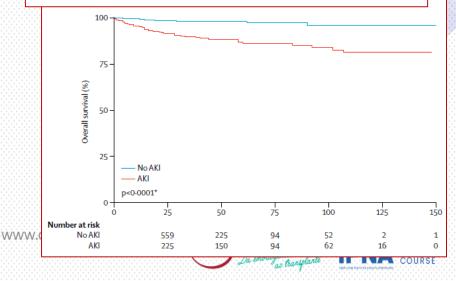
But PCr and eGFR comparable at 1 year

There is no evidence from randomized trials to support the use of dopamine to prevent renal dysfunction in indomethacin-treated preterm infants (Barrington K, Brion LP)

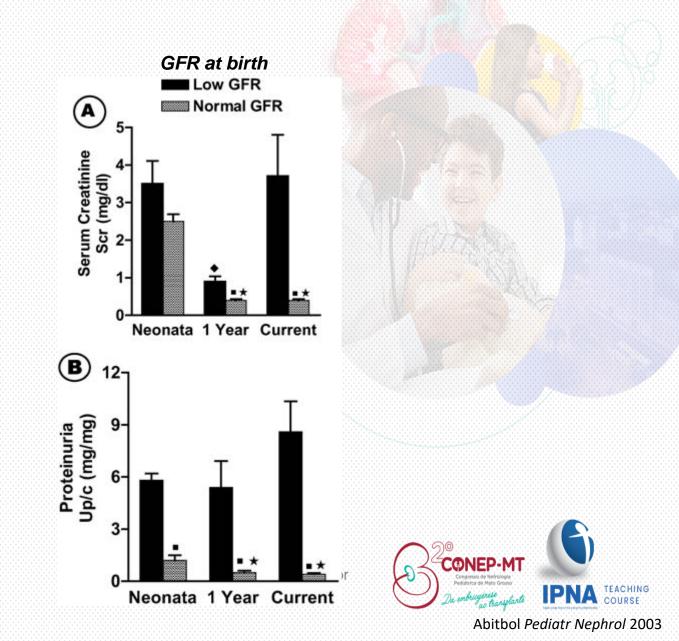
There is currently insufficient evidence from randomised controlled trials that the use of dopamine in term infants with suspected perinatal asphyxia improves mortality or long-term neurodevelopmental outcome (Hunt R, Osborn D)

Outcomes

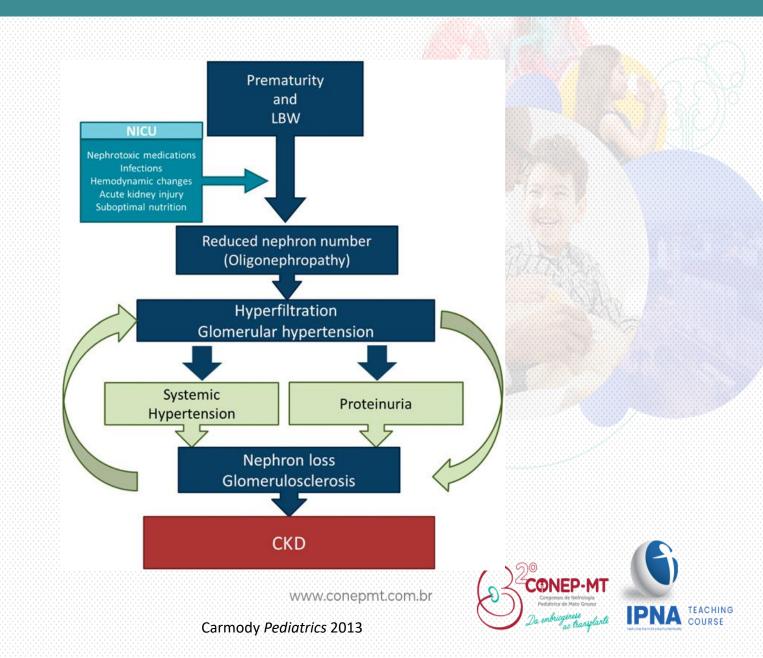
- Better survival in the absence of oliguria/anuria
- Mortality rate increased by 25 to 68 % in case of oliguria/anuria

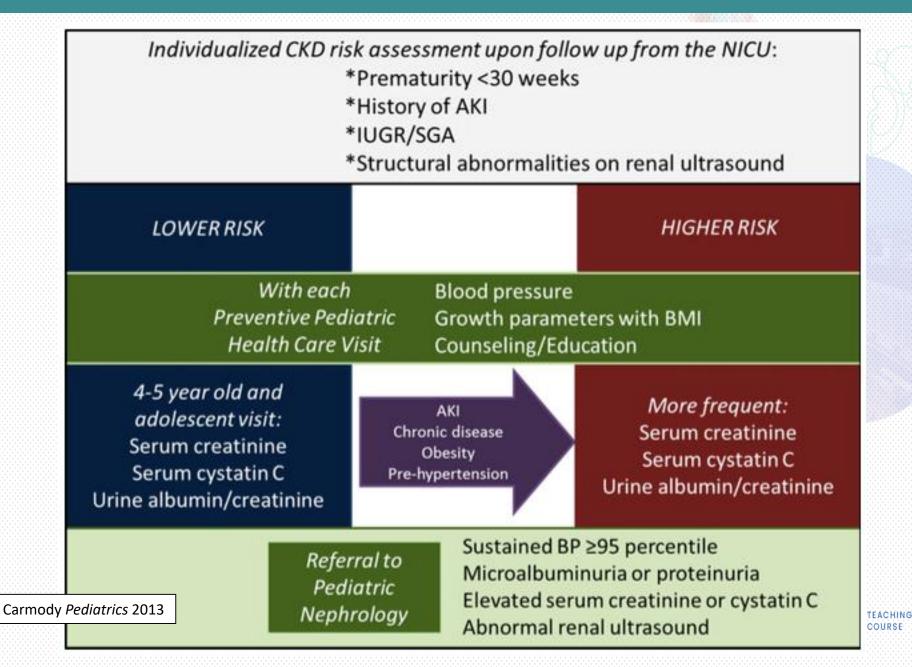

	Any AKI				aximum A KI stage				
	No (n=1417)	Yes (n=605)	p value	0 (n=1417)	1 (n=281)	2 (n=143)	3 (n=181)	p value	
Survived			<0.0001					<0.0001	
Yes	1397 (99%)	546 (90%)		1397 (99%)	255 (91%)	133 (93%)	158 (87%)		
No	20 (1%)	59 (10%)		20 (1%)	26 (9%)	10 (7%)	23 (13%)		
Length of stay (days)	19 (9-36)	23 (10-61)	<0.0001	19 (9-36)	18 (9–55)	30 (11-79)	27 (13-59)	<0.0001	

Data are n (%) or median (IQR). 140 enrolled patients had less than two serum creatinine measurements and no urinary output data. Among patients who did not die, 306 were transferred for convalescence or escalation of care. AKI-acute kidney injury.


Table 2: Clinical outcomes by AKI status

- 58 % sequellae
 - Arterial hypertension
 - Microlabuminuria
 - Impaired GFR
 - Concentrating defect
 - Hyperfiltration
- A lifelong monitoring is required


AWAKEN study – 2162 critically ill neonates from 24 NICUs Jetton Lancet Child Adolesc Health 2017


Long-term outcome of VLBW infants with neonatal AKI

AKI: additional risk for the developing kidney in the long term

In summary,

Conclusion - 1

- Anticipate at-risk conditions
- Give priority to
 - Maintenance of hemodynamics
 - Take care of any additional action
- Tricky definition
 - Looking for an ideal marker
 - Adapted investigations
- Increasing incidence (VLBW neonates)
- Prognosis
 - Extrarenal damage
 - (Very) long-term follow-up

Conclusion - 2

- Follow-up (frequency to be adapted up to /5 yrs)
 - Serum creatinine (Schwartz)
 - Urine albumin:creatinine ratio
 - Blood pressure
- Control of risk factors
 - Normalization of diet intake (Na, proteins)
 - Prevention of obesity and tobacco consumption
 - Avoid nephrotoxicity
- Drug renoprotection?
 - ACE-i
 - ARA-2
 - Antifibrotic agents

Acknowledgements Olivier Claris, Lyon François Nobili, Besançon

Thank you!